大模型在金融领域的应用技术与安全白皮书-上海财经大学-蚂蚁集团-BCTC

0 1 2 3 4 1.1 大语言模型技术发展概述 语言建模(Language Model)可分为四个发展阶段,分别为统计语言模型、神经语言模型、预训练语言模型、大模型语言模型。 其中最早的统计语言模型基于统计学习来预测单词,而后演进成为神经语言模型基于神经网络方法预测单词。在神经网络语言模型中,通过使用神经网络,将单词映射为向量作为网络模型的输入来估计单词序列的概率。随着注意力机制被引入,注意力层(Attention Layers)在文本中建立了词之间的相关性,使得模型在生成下一个单词时,考虑到整体语句的意思,从而建立了 Transformer 架构,提升了模型理解和生成语言的能力。 但随着参数的增加,需要大量人力来标注数据,因此 OpenAI 提出了预训练语言模型(Generative Pre-Trained Transformer),通过无监督学习在大规模无标签语料库上进行预训练任务,在预训练中模型学会了基于前一个单词预测后一个单词。除此之外,模型还可以针对特定的任务基于更小的数据集进行微调,提升在特定领域的性能。基于此,通过不断叠加数据增加模型参数规模以及优化模型的提示工程,不仅可以解决更复杂的任务,同时也拥有了更强大的文本涌现能力1,从而演进成为大模型语言模型(以下简称“大模型”)。 大模型浪潮爆发后,国内各企业纷纷推出自研大模型,大模型应用迎来了蓬勃发展的阶段。据测算,我国 2030 年基于大模型的生成式人工智能市场规模有望突破千亿元人民币。 与此同时,国内垂直行业领域的大模型也成为各个行业头部企业未来的发展趋势之一,其中前沿的垂类大模型涉及领域包括媒体影视、电商、广告营销、游戏、医疗、教育 1 Zhao et al,《A Survey of Large Language Models》 5 及金融行业。比如在金融领域,大型科技企业如华为推出了盘古金融大模型,而蚂蚁集团则在外滩大会发布了金融大模型“AntFinGLM”并应用于蚂蚁集团内部产品“支小宝”和“支小助”。 金融行业大模型在所有行业垂直大模型中落地速度相对较快。金融领域拥有天然的大量数据积淀,从而为大模型应用提供了良好的数据基础。同时金融领域大模型的应用场景较多,基于这些不同的场景,大模型有助于从不同角度提升原有从业人员及机构的工作效率。比如大模型情绪分析的功能可帮助从业者基于投资者情绪状态预测股票的价格;大模型精确度的提升可帮助从业者预测市场走势,大模型可基于过去大量的金融数据学习预测未来市场趋势帮助投资者和金融机构做出更合理的决策;而复杂任务的处理可协助从业者将大模型用于交易策略上,通过分析大量交易信息,大模型或可识别交易中的风险参数并给出风险防控策略。 1.2 大模型引领中国金融领域科技的国际化发展 因此,通过提升金融服务的效率和质量,大模型可提升我国金融机构的核心竞争力。首先大模型的自然语言理解与内容生成能力可以与用户进行多轮问答对话,提升金融客服的服务效率。其次,通过大模型进行智能数据挖掘处理,金融机构能够更快速准确地获取市场趋势的洞察,做出更明智的决策。同时,大模型可以迅速了解各国的法律、监管规定和市场动态,为金融机构提供国际化的业务洞察和决策支持,帮助中国从业者更好地理解和适应国际市场的业务需求和规则。 海外金融科技公司已经在积极探索和持续深化大模型在金融服务领域的应用。Bloomberg 已推出 BloombergGPT,一个基于 500 亿参数训练的应用于金融领域自然语言处理的大模型。据研究,当前此大模型在金融任务包括金融资讯分类任务(FPB),预测特定领域的金融新闻及话题(FiQA SA),股指推理(ConFinQA)等特定任务上的表现大幅领先于现有的近似规模的开放模型2。BloombergGPT 的推出说明海外在大模型金融科技应用方面已经取得了一定的成果。除此之外,一些传统金融机构也通过基 2 Wu et al, 《Bloomberg GPT:A Large Language Model for Finance》 6 础大模型的应用提升业务竞争力,大型国际投行 Morgan Stanley 已将 GPT-4 应用在财富管理领域打造内部智能助手从而辅助其财富管理顾问快速搜索所需资讯,高效地为客户提供服务。与此同时头部对冲基金 Citadel 也拟在全公司各条业务线中应用ChatGPT,提升业务运作效率。 而我国大模型和数字金融已有较好的产业发展基础,宜抓住此轮大模型科技变革机遇,进一步提升我国数字金融国际竞争力。2023 年中央金融工作会议提出将数字金融上升到国家战略部署的新高度,而大模型等新技术将进一步扩展金融科技的发展空间。根据《金融科技发展规划(2022-2025 年)》,目前应要抓住全球人工智能发展新机遇,深化人工智能技术在金融领域的应用。因此,我们应把握大模型技术浪潮,提升金融科技全球竞争力。 7 2.1 大模型在金融领域的应用挑战 由于金融行业的专业性、严谨性、合规性等特点,在把大模型技术应用到金融领域时,需要解决下述挑战,如图 2-1 所示。 图 2-1 大模型应用到金融领域时需解决的挑战 面对上述挑战,金融机构在应用大模型到金融业务场景的过程中,一般需要经过两个主要步骤:一是从通用大模型进一步训练调优出专业的大模型;二是以大模型为核心,结合金融专业知识库、金融专业工具库、智能体、安全合规组件等构成一个可满足金通用大模型的 金融专业性不足 金融领域具有高度的专业性,涵盖了复杂的金融理论、模型和实践,有着独特的术语内涵和表达方式。这些内容在常规的大数据训练集中往往表现不足,使得通用大模型在理解复杂的金融概念和操作上显得力不从心。 通用大模型的金融情境理解能力不足 通用大模型难以完成较复杂的金融指令 通用大模型难以 满足金融场景的 定制化需求 通用大模型难以满足金融领域应用的合规要求 金融领域具有高度的多样性,不同的机构和场景可能有着截然不同的需求。例如,投研场景会关注实时热点分析,投顾场景需关注投资者安抚等。通用大模型无法满足这些多样化和定制化的需求,从实践来看在落地过程中还涉及到具体的定制化调优。 金融市场受到严格的法规制约,包括反洗钱(AML)、客户了解程序(KYC)、数据保护法规、适当性义务等。这些法规要求金融机构在处理客户数据和执行交易时必须遵循特定的规则和程序。通用大模型可能在设计时没有充分考虑这些合规性问题,因而在应用时可能无法确保机构的业务操作符合监管要求。 金融领域在交易过程中存在大量较复杂的工具指令,如限价单、止损单等,都需要精确的表达和执行。这些指令往往与特定的金融逻辑紧密相关,通用大模型如果不能准确执行这些复杂的金融指令,就很难在金融领域中得到有效应用。 金融市场高度情境敏感,同一事件在不同的情境下可能释放出不同的信号。例如,某一公司发布的财务报告如果不符合市场预期,对于该公司而言可能是负面的,但对于寻求低估值入市的投资者而言却可能是一个机会。通用大模型很难精准把握这种情境下的语义差异和心理预期,这就要求模型能够更加敏感地对待金融语境和事件,需要对这些模型进行金融情境的深度训练和优化

立即下载
金融
2024-04-18
76页
3.04M
收藏
分享

大模型在金融领域的应用技术与安全白皮书-上海财经大学-蚂蚁集团-BCTC,点击即可下载。报告格式为PDF,大小3.04M,页数76页,欢迎下载。

本报告共76页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
本报告共76页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
水滴研报所有报告均是客户上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作商用。
相关图表
2020~2023 年上市银行的分红比例及分红政策
金融
2024-04-18
来源:银行业2024年二季度投资策略:聚集红利价值和绩优白马
查看原文
重点上市银行的个人经营性贷款占比及不良指标
金融
2024-04-18
来源:银行业2024年二季度投资策略:聚集红利价值和绩优白马
查看原文
重点上市银行的个人贷款占比及资产质量明细指标
金融
2024-04-18
来源:银行业2024年二季度投资策略:聚集红利价值和绩优白马
查看原文
部分国有大行的房地产对公贷款不良率环比回落 图 29:部分股份行的房地产对公贷款不良率环比回落
金融
2024-04-18
来源:银行业2024年二季度投资策略:聚集红利价值和绩优白马
查看原文
2024 年 2 月末人民币定期存款占比上行至 71% 图 25:近两年国有大行的存款成本率反而明显上升
金融
2024-04-18
来源:银行业2024年二季度投资策略:聚集红利价值和绩优白马
查看原文
2024 年 2 月 5 年期 LPR 下调 25BP 至 3.95% 图 23:2022 年至今的新发放贷款利率持续走低
金融
2024-04-18
来源:银行业2024年二季度投资策略:聚集红利价值和绩优白马
查看原文
回顶部
报告群
公众号
小程序
在线客服
收起